一秒记住 思路客 www.siluke123.com
证。
可以找到满足题意的12个砝码称量1-59范围内的物体。
答完题。
伊诚闭上眼睛,细细地品味着。
不得不说出题人真的很棒。
至少他让人在这道题目中领略了什么是数学之美。
不单单是因为斐波那契数列是黄金分割,本身就具有艺术美感。
更关键的是,这题反应了从探索到猜想,再到证明的数学之美。
啧啧。
伊诚砸吧着嘴唇,在陶醉了一番后,继续攻克最后一道大题。
现在时间才过去了三分之一。
最后一题是一道证明题:
设S为R^3中的抛物面z=(x^2+y^2)/2,P(a,b,c)为S外一固定点,满足a^2+b^2大于2C,过P点作S的所有切线。
证明:这些切线的切点落在同一平面上。
本以为是压轴题,应该有点难度,但是伊诚稍加思索,发现这题并不难。
在几何中,有一个非常厉害的王者咖喱棒。
它就是向量。
只要使用向量这把咖喱棒,就能把一切都斩于无形。
伊诚略加思索,运用向量把题目证明完毕。
完了以后,他发现了一个神奇的事情——
这道题目不只是在二维平面上是可证的,甚至可以推广到二次曲面上。
于是伊诚又用向量证明了二次曲面的推广命题。
做完这些,伊诚在想,既然二次曲面也是可行的,那么有没有可能推广到3次?
当他忘乎所以,在草稿纸上进行更高维度的推广时——
考试时间结束了。
按照竞赛的要求,考官会把考卷连同草稿纸一起密封进行考核。
伊诚一脸茫然,对最后的步骤没有做完耿耿于怀。
“这次不像你啊!”
在赛场门口,李安若抱着双手嘲讽到。
“你不是次次都是第一个交卷的吗?”
。_:
证。
可以找到满足题意的12个砝码称量1-59范围内的物体。
答完题。
伊诚闭上眼睛,细细地品味着。
不得不说出题人真的很棒。
至少他让人在这道题目中领略了什么是数学之美。
不单单是因为斐波那契数列是黄金分割,本身就具有艺术美感。
更关键的是,这题反应了从探索到猜想,再到证明的数学之美。
啧啧。
伊诚砸吧着嘴唇,在陶醉了一番后,继续攻克最后一道大题。
现在时间才过去了三分之一。
最后一题是一道证明题:
设S为R^3中的抛物面z=(x^2+y^2)/2,P(a,b,c)为S外一固定点,满足a^2+b^2大于2C,过P点作S的所有切线。
证明:这些切线的切点落在同一平面上。
本以为是压轴题,应该有点难度,但是伊诚稍加思索,发现这题并不难。
在几何中,有一个非常厉害的王者咖喱棒。
它就是向量。
只要使用向量这把咖喱棒,就能把一切都斩于无形。
伊诚略加思索,运用向量把题目证明完毕。
完了以后,他发现了一个神奇的事情——
这道题目不只是在二维平面上是可证的,甚至可以推广到二次曲面上。
于是伊诚又用向量证明了二次曲面的推广命题。
做完这些,伊诚在想,既然二次曲面也是可行的,那么有没有可能推广到3次?
当他忘乎所以,在草稿纸上进行更高维度的推广时——
考试时间结束了。
按照竞赛的要求,考官会把考卷连同草稿纸一起密封进行考核。
伊诚一脸茫然,对最后的步骤没有做完耿耿于怀。
“这次不像你啊!”
在赛场门口,李安若抱着双手嘲讽到。
“你不是次次都是第一个交卷的吗?”
。_: